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Linear decay in multilevel quantum systems 
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Abstract. W e  report a new decay phenomenon in multilevel quantum system. Un- 
der certain conditions, there exist states of the system that decay rapidly at sharply 
localized times. Tl;is results in an average decay that is fineor over most of the life 
of the excited state. Moreover, the totd decay rate is not a monotonic function of 
the coupling strength between the excited and decayed states. W e  explore the math- 
ematical hasis of this phenomenon and consider its consequences for the quantum 
measurement problem. 

Quantum mechanical decay has been found to be robustly exponential and, aside 
from memory effects, the principal theoretical departures involve very short and very 
long timest. We here report a remarkable new decay phenomenon which we term 
‘ticking,’ in which particular initial states of a multilevel quantum system remain 
almost entirely undecayed for an extended period, subsequent to which they undergo 
a rapid transition to the decayed final state. The collection of all such ‘particular 
initial states’ substantially exhausts the Hilbert space of initial states; moreover, each 
of them has its own particular decay time and these times are evenly spaced. As 
a result, to a good approximation, the decay averaged over randomly selected initial 
excited states is linear. On casual inspection, the Hamiltonian giving rise to this effect 
shows no obvious tendency for repetitive or periodic behaviour, nor is the overall linear 
decay law dependent on a special selection of initial conditions. 

Our interest in this phenomenon is threefold. First, there is the purely mathemat- 
ical issue of how a rather simple linear dynamical system can give rise to sudden near 
discontinuities. Second, the average linear decay found here, a drastic departure from 
the generic exponential time dependence, appears to be a completely new phenomena 
in quantum mechanics. Third, this phenomenon, was discovered while searching for 
the special measurement states whose existence is postulated in [2]. The states we 
have found not only provide examples of special states but come with the relative 
abundances required by that theory. 

t The ‘watched pot’ short-time O ( t 2 )  dependence, long time power-law behaviour (and more) are 
discussed in Fonda ef al [I]. Another comprehensive I O U ~ C ~  is Newton [I]. There are other exotic 
phenomena, such air double poles. and these too are discussed by Newton. Recent interest, motivated 
by questions of proton decay. can be found in Gaemers and Visser [I]. The term ‘watdwd kettle’ wag 
used in Peres [l]. 

03054470/91/092053+08$M.50 @ 1991 IOP Publishing Ltd 2053 
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TIME 

Figure 1. Non-decay probabilities for particular initid conditions. The broken line 
is the average. Space of decay products is infinite dimensional. The details of the 
Hamiltonian are given in the text preceding equation (8). 

The phenomenon is illustrated in figure 1. What is shown is the decay (to a 
continuum, under an M 3 03 limit of the Hamiltonian of equation (l), below) of a 
quantum system of 40 closely spaced levels. The broken line is the average of the 
probability that the system remains in any of the initial 40 states. The full curves, 
roughly speaking, are the decay histories of particular initial superpositions of the 
original 40 levels. (As we shall explain below, a more precise description is that for 
each time there is an initial state that  attains the indicated degree of decay. Thus 
at  time 100 there is a 13-dimensional subspace of states that  have almost entirely 
decayed, a 22-dimensional subspace of states that have hardly decayed at  all and five 
dimensions in transition.) 

To derive the context within which figure 1 is calculated we consider the general 
Hamiltonian 

The Hilbert space 'H is ( N  + M)-dimensional, with the first N dimensions, the sub- 
space 'H,, representing uudecayed systems, and H ,  being their Hamiltonian in the n- 
transition approximation. Correspondingly the decay products are an M-dimensional 
space (ZM) with Hamiltonian H,. Finally C is the N x M matrix of transition am- 
plitudes. This Hamiltonian is the multimode generalization of the Dicke Hamiltonian 
[3]. For radiative decay in infinite volume, decay products lie in a continuum, so that 
M = 00, while in finite volume M is finite and may be quite small [4]. 

Let P project on 'H,, The initial state Go is in 'H, and the amplitude for non- 
decay at time t is $lt,non-decay = Pexp(-iHt)G,. It follows that the probability of 
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non-decay can he written 

Proh(non-decay at time t, = (@t,non.decay I$'t,non.decay) 
('4 

= (+olAfA* 1%) 
with A, = Pexp(-iHt)P. For random initial conditions we average over 7 f N  and 
the decay probability is (l/N)'IkAjA,. Ordinarily this is of the form e-rL with r - 
n C'C. 

As indicated, we sought to det,ermine whether there were special initial states 
for which there was significant departure from the average behaviour, in particular 
whether states could be found with either imperceptible decay or with decay that 
was imperceptibly different from the total. To this end we examined the spectrum of 
AfA, for a particular time 1. If AfA,  has an eigenvalue near one, the corresponding 
eigenstate represents an initial condition (in H H N )  for which, a t  time 1, the operator 
exp(-itH) has hardly taken i t  out of the subspace E N .  For a zero eigenvalue there is 
a state that has totally decayed. 

We specialize to the case where the rows of C are smooth as functions of the H, 
index, and in particular we will take them to be constant (although our results are 
insensitive to small variations). Such a situation obtains for atomic decay in the dipole 
approximation. For convenience we diagonalize H ,  and H,, which only rearranges C. 
The value taken by the elements of each row is picked randomly, although in most of the 
results we quote this value was of constant magnitude and uniformly distributed phase. 
In figure 2 we show the eigenvalues of Af A, as a function of time for N = M = 40, 
where the eigenvalues of H N  have been taken to be randomly distributed between 
0 and 1 in accordance with the Wigner surmise [5] and the  eigenvalues of H ,  are 
uniformly distributed between -0.1 and 1.1. 

TIME TIME 

Figure 2. Non-decay probabilities for particular initial conditions. The broken line 
is the average. (a)  Space of decay products is finite dimensional. ( b )  Space of decay 
products is infinite dimensional. (Same eu figure 1,  but for time period that matches 
that of figum 2(0)). 

The ticking is evident in figure 2 and we next provide a theoretical explanation of 
this effect. First we dispose of H, by going to an infinite-volume continuum limit. 
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For $ we write ( c )  with X the restriction of $ to H,. From id = H $ ,  it follows 
that 

L S Schvlman et  a/ 

X = -iH,X - C I' dsexp (-iH,(t - s)) CtX(s)  

X = -iH,X - c II ds (l /M)Tt exp(-iH,(t - s))ctX(s). 

(3) 

which is exact (for any C). For row-constant C we write cL = C L , a ,  Equation (3) 
Decomes 

(4) 

In the limit M + CO, (1/M)Tre-jflM' is d ( r )  and we have 2 = -iH,X - acctX. 

projection operator. We highlight this by defining c = @ q  with q a unit vector 
and 6 2 0. Equation (4) becomes 

A n  -ma..+;91 C.,-+,.m ;- -l.eo,l., -.,:A-"+ :" h l r - i  ..-t :- __-_-_&:-..-I 1- ~ - - ~  A: : - - - I  
'Ill L0"L. I IU.Y.  ' r o * Y Y L c  .I ""C""J F l l U C l l Y  111 L u a u  L L '  1D yL"pu'Y'",,a' LIU a ",,~",,,,~,,5,u,,a, 

X = -iH,X - @r)r)tX 

2 = -aq(t)q(t)+z (6) 

(5) 

or 

with Z = eiHN'X, and q( t )  = eiHNtqe-iHN' . (We make the following remark. For 
N = 1, this development may be of pedagogical interest for presenting an explicit 
calculation of dissipation. With a minimum of algebra one can see how a continuum 
of final states, combined with the use of the initial condition IlX(0)l12 = 1, yield irre- 
versible behaviour.) X t X  or Z t Z  represent the probability of non-decay. In equation 
(6) we see the beginnings of a qualitative explanation of the ticking phenomenon. 
Initially the time evolution consumes the component of X, (= X(0)) along q,  but 
nothing else. For that one component (call it U) equation (6) has the form U = -au, 
while the other components have zero derivative. Hence AfAt  has one eigenvalue that 
is roughly e-2at and other eigenvalues 1. Meanwhile q ( t )  is rotating within XN under 
the action of H,. If a is large enough, (q(O)lX(t)) will become small before q( t )  has  
moved to  a substantially different direction. Next, the new direction is consumed so 
that the decay is successively confined to one-dimensional subspaces. This explains 
both the existence of the ticking and its regularity, since the latter feature depends on 
the fact that q(t) moves through 31, in a time homogeneous fashion with only a long 
time recurrence. 

This argument is incomplete in that it suggests that increasing a should improve 
ticking, whereas numerically there is found to be an optimal value for sharp ticking 
which we have reason to believe is 1/r (for large N ) .  In fact, a sufficient increase in a 
not only destroys ticking, it decreases total decay rate. This counter-intuitive property 
arises from a variant of the 'watched pot' effect [I]. To see this, consider equation (5) 
in the case of large a. We show that if (qlX,) = 0, then large a will prevent H ,  from 
moving X, into the direction of q. Let At be such that (qlHNIX,) < l /A t  - a and 
consider the Trotter product [6] for the evolution 

X ( t )  - [exp (-Ataqqt) exp (-iHNAt)]'"' X(0). (7) 
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Figure 3. Time evolution of a Dirichlet wavepacket initially located at 6 = - 2 ~ 1 5 .  

A condition for the validity of equation (7) is cr(At)2(qIHNIXn) << 1. The operator 
exp(-iHNAt) gives a term along q and a term orthogonal t o  it. The norm of the 
orthogonal term is unchanged by exp(-Atat/q') while the piece along 1 is substantially 
wiped out (e.g. take At = 5/a).  Each of the t /At  iterations reduces the norm by 
I(qIexp(-iIfNAt)IXn)(2, or At2 x O(1). After t /A t  iterations the norm is therefore 
(1 - (At)2)'lAt or exp(-At). Thus the smaller we can take At ,  the less the change in 
norm. 

Equation (5) is of the form X = -QX with Q = iH, + aqq'. It follows that 
A, = exp(-Qt) and AIA, = e-@ie-@. This is a convenient form for analysis. For 
definiteness take HN = (1/21).Js and (I),,, = l/n, m = 1, .  . . , N, where J ,  = 
diag(-1, - I  + 1,. , . , I )  and N = 21 + 1. This is the system for which figure 1 was  
calculated, with the N = 40 and a = l/r. As a basis take the functions eim@. For X 
we write X ( t ,  Q) = CX,,,e"~ so that HN becomes (1/2il)a/a+. Equation (5) is then 

with D(Q) I sin((21+ l)Q/2)/sin(Q/2), the Dirichlet kernel. For large I ,  D(Q) is 
6-function like and evolution under (8) can be described as follows. Take X ( 0 , Q )  to  
be a localized wavepacket with support away from Q = 0. Initially it propagates with 
no change of shape or norm and the operator a / a t  - (1/21)a/aQ gives the packet a 
velocity 1/21. When this packet hits 0, i t  is substantially wiped out by the dissipative 
6-function. A reasonable qualitative proposal is that the 'special states', the ticking 
eigenfunctions of A i A , ,  are a sequence of packets that strike + = 0 a t  time intervals 
of about 27r. This argument also suggests that the best state for ticking is D(Q) itself. 

The foregoing reasoning does not t,cll the whole story, but its substantial correct- 
ness can be seen by watching the time evolution of the norm of a state that begins as 
a Dirichlet kernel centred at -2s/5, see figure 3. The actual eigenfunctions of AiA,  
drop more completely than do the localized packets described above; moreover, as t 
is varied, the best initial function, even within one tick, changes. Evolution of these 
functions reveals qualitative similarity to the simple localized packets, but the actual 
special states have coherences beyond localization in $-space. 
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We next address the optimization of a. For N = 2 the eigenvalues of AfA, are 
(Q = i0,/2 + awt, vt = ( 1 , 1 ) / d )  

with z1 = cosh($-) and U = [ s i n h ( f t m ) ]  /-. A t  a = 1 (in N = 
2)! the solutions go from distinct asymptotic exponentials to oscillations about a single 
exponential. Note that for all a, A - 1 - O(t2)). (Initial decay can be linear in t ,  
because replacing Tr e-iHnr‘ by a &function gave the necessary frequency components.) 
For large N, we use Green function and Laplace transform techniques on equation (5). 
Letting X(u)  (an N-vector) be the Laplace transform of X ( t ) ,  we have 

+ -. 

with A(u) = (ql(u+iHN)-’1q). We are thus led to  study the roots of 1 + aA(u).  As 
a goes from large to small, the roots undergo an interesting traverse in the complex 
plane starting (with one exception) and ending on the imaginary a-axis-consistent 
with small decay for both large and small a. For large a there is one root on the 
far left; the others are nearly pure imaginary. As a decreases the far left root moves 
rapidly toward the others which in turn move slightly left. For even N,  there is a 
second real root that moves (from 0) to meet the incoming large, negative root. The 
other roots also move left, but not as far. The roots reach their leftmost extremes 
at values of a that approximately coincide with the meeting of the real roots. The 
latter bounce off each other and now all roots move toward the imaginary axis, We 
have shown that the large N limit of the a value for which the real roots meet is l / ~ .  
For odd N,  a variant of this scenario also selects a = l/a. When the spectrum is not 
regular (as for the Wigner surmise) the orchestrated bounce does not take place, but 
the overall picture is the same. 

This behaviour of the roots is correlated with the ticking. For large a essentially 
only one tick exists; further decay is suppressed. The ‘best’ ticking occurs at  the 
maximal leftward excursion of all the roots. 

The phenomenon we have described was discovered while looking for ‘special’ 
measurement states in quantum mechanics, states whose existence is predicted by 
the measurement theory of [2]. That theory postulates particular initial states of a 
measurement apparatus that go entirely to one or another of the possible final (and 
macroscopically distinguishable) outcomes of a measurement. This is in contrast to 
the result of typical initial conditions for which one obtains a snperposition of several 
macroscopically distinct states. Dealing with that superposition is the problem of the 
quantum theory of measurement. According to [2], one requires neither ‘collapse’ nor 
‘many-worlds’ (or perhaps ‘many-points-of-view’ [7]) but rather that the initial state 
of the system preclude the occurrence of such superpositions. 

Our current results argue in favour of the existence of the states postulated in [2]. 
In the present work we have a linear system whose average behaviour is the gradual 
decay out of a subspace 71,. Nevertheless, we find there to be special initial conditions 
such that a state with such an initial condition is undecayed for an extended interval, 
whereupon it rapidly and decisively decays. One thus has collapse-like behaviour in 
a linear theory. In other words, at  any particular time there is a subspace of (nearly) 

\ 
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fully decayed and of (nearly) fully undecayed states. A stronger property, not required 
by [2], is that these subspaces substantially exhaust X. 

For the system of the present paper, the probability that a random initial state 
has decayed equals the ratio of the dimension of the fully decayed subspace to the sum 
of the dimensions of all special state subspaces. That this should be the case was also 
suggested in [2] and is the basis for the recovery of the usual probability predictions 
of quantum mechanics. 

Finally, we report briefly on our efforts to determine the extent to which ticking 
occurs in  Nature, either occasionally or generically. A single mode decaying to a 
continuumdoes not show ticking. N such levels, interacting through the same coupling 
that causes them to decay, provide a model in which the common origin of the mutual 
and decay coupling can account for the parameter (I falling in the ticking range. 

Alternatively, consider a single mode decaying to a continuum in the presence of 
peripheral degree of freedom that are ordinarily ignored. Suppose the latter have the 
property that the 'phonon' emitted in the decay causes transitions among them. A 
possible Hamiltonian is HI + H ,  with 

M L, 
1 ..- ... 

H I  = Ua, + x w k b L b k  + - [cka+bk + adjoint] 
k=l k 1  

.. (9) 

where 2U > 0 is the decay energy, b, boson field operators and ak can be either 
boson or fermion operators. Remarkably, we have found that this system also exhibits 
ticking. However, computational limitations have prevented a full-scale exploration of 
this case. 
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